HU AU82188 # INEL REFECT OF Z/G, SQUINCE VARIATIONS ON POZ/G, POTIC, PREZOKLECTRIC PROPERTIES Pinal Report and Technical Report No. 2 to the Office of Naval Research by W.B. Harrison MIN 1 9 1880 D Contract N00014-76-C-0623 NR 032-566 August 979 Reproduction in whole or in part is permitted for any purpose of the United States Government. THE COPY Honeywell Inc. Ceramics Center Defense Electronics Division 1885 Douglas Drive Minnespolis, Minnesota 55422 410542 This document has known approved for public related and sale; its mainted. 80 2 19 102 | • | SECURITY CLASSIFICATION OF THIS PAGE (WHEN | DATA ENTERED) | • | |------------|--|--|--| | • | REPORT DOCUMENTATION | ON PAGE | READ INSTRUCTIONS BEFORE COMPLETING FORM | | . 4 | REPORT NUMBER 2 | . GOV'T ACCESSION NUMBER | 3. RECIPIENT'S CATALOG NUMBER | | { | [6] | | | | | Per and sublified | | 5. TYPE OF REPORT A ERIOD COVERED | | | Effect of ZrO ₂ Source Varia | 111 | Final Mar 31 May 379. | |) | $PbZrO_3$ - $PbTiO_3$ Piezoelectr | ic Properties | G. PENFORMING ORG. REPORT NUMBER | | | 7. AUTHOR(S) | | 47602 | |] | 7 | | 8. CONTRACT OR GRANT NUMBER(S) | | | W.B. Harrison
M.P.T. Murphy | | N00014-76-C-0623 NR 032-566 | | | 9. PERFORMING ORGANIZATIONS NAME/ADDRESS | (151) | NR 032-566 | | | Honeywell Inc., Ceramics Ce | nter | 10. PROGRAM ELEMENT PROJECT, TASK AREA
& WORK UNIT NUMBERS | | | Defense Electronics Division | n | | | | 1885 Douglas Drive, Golden 11. CONTROLLING OFFICE NAME/ADDRESS | Valley, MN 55422 | | | | Office of Naval Research | 11115 | Jan 800 | | | Department of Navy | | 13. NUMBER OF PACES | | | Code 471, Washington D.C., 14. MONITORING AGENCY NAME/ADDRESS (IF DIF | 20390 ' | 45 15. SECURITY CLASSIFICATION (OF THIS REPORT) | | | (IF OIF | FERENT FROM CONT. OFF.) | i . | | | | 1)51 | Unclassified | | | (10 | | 15a. DECLASSIFICATION DOWNGRADING SCHEDULE | | | 16. DISTRIBUTION STATEMENT (OF THIS REPORT) | | | | 1 | Reproduction in whole or in | nart is | document has been approved | | | permitted for any purpose of | | oublic rabons and sale; is | | | United States Government. | | ibution is unlimited. | | | 17. DISTRIBUTION STATEMENT (OF THE ABSTRACT | ENTERED IN BLOCK 20 IF O | EEERENY EROM OFFICE | | j | | | FFERENT PROM REPORT) | | | (14) | The same of sa | | | ļ | _ 4760 | ガユ . T.R-コ | | | | 18. SUPPLEMENTARY NOTES |) 11. 6 | | | í | , | | / | | ľ | | | | | - 1 | 19 KEV WORDS / CONTINUE ON REVERSE | | | | ł | 19. KEY WORDS (CONTINUE ON REVERSE SIDE IF N
Zirconium Oxide, Coprecipita | ecessary and identify by | PIC Ceramics Transducers | | - 1 | High Drive PZ-PT | 1100,1000,10001 | ic ceramics, fransducers, | | . } | ı | | 1 | | 1 | | | 1 | | I | ABSTRACT (CONTINUE ON REVERSE SIDE IF NE | ESSARY AND IDENTIFY BY | LOCK NUMBER) | | Ŧ | was physically and chemically | on source minera | ls and many process variations impact of the ZrO ₂ variations | | HD-160 REV | ODTAINED WAS then evaluated | in both dry and | wet blanded load rimonata | | R | lead titanate, high drive ty | pe piezoelectric | compositions. Proper puri-
to yield PZ-PT material with | | | uniform low and high drive p | e Zru ₂ was shown | to yield PZ-PT material with | | 3 | Zrug and dry blending were s | shown to be highl | v variable processes Also | | L | solution ceramic approaches | <u>produced a highe</u> | r density PZ-PT. | | C | DD FORM 1473 EDITION OF 1 NOV 55 IS C | RSOLETE | | | | | SECURITY C | LASSIFICATION OF THIS PAGE (WHEN DATA ENTERED) | | | | | I | | | | • | 410572 29WI | | | 4 5 5 . | | | The state of | SE | URITY CLASSIFICATION OF THIS PAGE (WHEN DATA ENTERED) | | |-----|--|--------| | Γ | | | | İ | | | | | | | | | | | | 1 | | | | 1 | | | | 1 | | | | 1 | · | | | 1 | | | | l | | ı | | 1 | | l
İ | | 1 | { | ŀ | | | | | | | | | | 1 | , and the second se | | | ١ | | ١ | | 1 | | | | ١ | | l | | Ì | | l | | 1 | | 1 | | - | | l | | ١ | | l | | 1 | | Ì | | ı | | l | | 1 | | | | 1 | | ł | | ١ | | l | | } | | ł | | ł | | 1 | | ł | | ١ | | - { | | 1 | | 1 | | ١ | | | \cdot | ١ | | | | 1 | | - { | | l | | | | | | | | 1 | | | | 1 | | | | | | | | | | | | | | | · | | SECURITY CLASSIFICATION OF THIS PAGE (WHEN DATA ENTERED) ### **Abstract** ZrO₂, derived from three zircon source minerals and many process variations, was physically and chemically analyzed. The impact of the ZrO₂ variations obtained was then evaluated in both dry and wet blended lead zirconate-lead titanate, high drive type piezoelectric compositions. Proper purification and blending of the ZrO₂ was shown to yield PZ-PT material with uniform low and high drive piezoelectric behavior. Single precipitated ZrO₂ and dry blending were shown to be highly variable processes. Also, solution ceramic approaches produced a higher density PZ-PT. | Access | ion For | | |---------------------------|-------------------|--------| | NTIS DDC TAI Unname Julif | 3 | | | By | hution/ | 1 | | | shility (| odes . | | Dist | Avail and special | /or | # **Table of Contents** | Section | | Page | |---------|--|----------------------| | I | INTRODUCTION | 1 | | 11 | EXPERIMENTAL PROCEDURE | 2 | | | A. Reprecipitation of ZrO ₂ · XH ₂ O B. Coprecipitation of ZrO ₂ into PZ-PT C. Chemical Analysis of Lead Zirconate Titanate | 5
7
9 | | Ш | RESULTS AND DISCUSSION | 11 | | | A. Surface Area of ZrO₂ B. Chemical Uniformity of Fired PZ-PT C. Reprecipitated ZrO₂ in PZ-PT D. Coprecipitation of PZ-PT | 12
15
19
26 | | IV | SUMMARY AND CONCLUSIONS | 33 | | V | ACKNOWLEDGEMENTS | 34 | ## List of Illustrations | Figure | | Page | |--------|--|------| | 1 | Flow diagram for ZrO ₂ production. | 4 | | 2 | Typical particle size distribution curve for ZrO ₂ obtained by MSA approach. | 5 | | 3 | A ZrO ₂ surface area as a function on calcination temperature. | 12 | | 4 | Influence of surface area on the dry pressed density of ZrO ₂ . | 14 | | 5 | Influence of ZrO ₂ surface area on the dry pressed and final PZ-PT densities. | 16 | | 6 | The impact of PZ-PT blending procedure on final density. | 17 | | 7 | Zr/Ti ratio versus frequency constant for PZ-PT produced from | 27 | ## List of Tables | Table | | Page | |-------|---|------| | 1 | Batch additions for reprecipitation of zirconium hydroxide. | 7 | | 2 | Batch formulations using chemical solutions of zirconium. | 9 | | 3 | Within batch chemical uniformity for six samples of wet blended PZ-PT using Florida precipitated ZrO ₂ . | 10 | | 4 | Surface area of ZrO ₂ in square meters per gram. | 13 | | 5 | X-ray diffraction results on final PZ-PT compositions. | 18 | | 6 | Chemical impurities in ZrO, powder. | 21 | | 7 | Physical properties of ZrO ₂ powders. | 21 | | 8 | Chemical composition of fired PZ-PT. | 22 | | 9 | Density and unpoled dielectric constant of PZ-PT. | 23 | | 10 | Poled dielectric constant of PZ-PT. | 23 | | 11 | Piezoelectric radial coupling coefficient of PZ-PT. | 24 | | 12 | Piezoelectric frequency constant of PZ-PT. | 24 | | 13 | Mechanical quality factor of PZ-PT. | 25 | | 14 | High drive properties of PZ-PT. | 25 | | 15 | Properties of TNBZ/TNBT derived ZrO, TiO, powders. | 30 | | 16 | Chemical uniformity of TNBZ/TNBT coprecipitated PZ-PT batches. | 30 | | 17 | Fired piezoelectric properties of PZ-PT prepared from | 31 | - #### I.
Introduction Most of the Navy's active and passive transducers contain lead zirconate-lead titanate (PZ-PT) ceramic elements. These materials have been used extensively in transducers because they are capable of operating at both low and high frequencies, high stress amplitudes, high powers and large bandwidths at high efficiencies. Where these properties are required, PZ-PT ceramics are the most cost-effective approach known. However, there are still certain limitations in the uniformity of performance, related primarily to the variability of the source of ZrO₂ used. This program was initiated to study the source of variability in ZrO₂ and its impact on the piezoelectric performance of a typical high drive projector type PZ-PT composition. The impact of ZrO₂ derived from various zircon sources, in both a dry and wet blend PZ-PT batching approach, was evaluated. ## II. Experimental Procedure Honeywell's approach to this study was based on a well-established capability for producing piezoelectric ceramic materials used in various Navy and DoD programs over the past 20 years. Two approaches, described in the first technical report⁽¹⁾ on this program, were used to generate ZrO₂ for this study. Initially, zircon (ZrO₂ · SiO₂) was obtained from three sources and processed into ZrO₂ by the standard commercial process used at the Harshaw Chemical Company* for piezoelectric grade ZrO₂. In the second approach, the standard Honeywell alk-oxide process, which uses tetra-N-butyl zirconate (TNBZ), was used to produce ZrO₂. The ZrO₂ produced by each of these processes was chemically and physically characterized, and then its impact on the behavior and properties of PZ-PT was evaluated as previously described⁽¹⁾. This section updates the previous work and describes new approaches employed in the contract's final period. The chemical reactions involved in the standard approach used by Harshaw to produce ZrO₂ from ziron, described in the first technical report, (1) contained several errors. The correct version of these reactions is shown in Equations 1 through 8. $$ZrO_2 \cdot SiO_2 + 4NaOH (Typical) \rightarrow Na_2SiO_3 + Na_2ZrO_3 + 2H_2O$$ (1) $$Na_2ZrO_3 + 2HCl \rightarrow ZrOCl_2 + 2NaCl + H_2O$$ (2) $$ZrOCl_2 + 0.6 H_2SO_4 \rightarrow ZrO \cdot 0.6 SO_4 \cdot x OH + 2 HCl$$ (3) First Precipitation $$ZrO \cdot 0.6 SO_4 \cdot x OH + 1.2 NH_4 OH + H_2O \rightarrow ZrO_2 \cdot x H_2O + 0.6 (NH_4)_2 SO_4$$ (4) $$ZrO_2 \cdot x H_2O + HCl + H_2O \rightarrow 2 ZrO OHCl + H_2O$$ (5) $$ZrOOHCl + 0.6 H_2O \rightarrow ZrO \cdot 0.6 SO_4 \cdot x OH + HCl$$ (6) Second Precipitation $$ZrO \cdot 0.6 SO_4 \cdot x OH + 1.2 NH_4 OH + H_2O \rightarrow ZrO_2 \cdot x H_2O + 0.6 (NH_4)_2 SO_4$$ (7) Calcine $$ZrO_2 \cdot x H_2O + HEAT \rightarrow ZrO_2 + H_2O$$ (8) * Harshaw Chemical Company, Division of Gulf Oil Company, Cleveland, Ohio 44106 The exact details of the Harshaw process were not made available; however, since their process is based on the caustic fusion process, it is likely that it proceeds approximately as shown in Figure 1. This process has been described⁽²⁾ as follows: "Caustic soda has been found to be a suitable agent for the decomposition of zircon sand (zirconium silicate). By using an optimum ratio of 1.1 parts by weight of caustic soda to 1 part of unground zircon sand and a furnace temperature of 650°C, about 90% of the zircon reacts to form sodium zirconate, sodium silicate and a small amount of sodium silicozirconate. This reaction takes between 1 and 2 hours to reach completion and can be carried out in a container fabricated from mild-steel plate. The resulting product is a light-colored granular material from which the water-soluble sodium silicates can be easily removed by a hot-water leaching operation. In practice, this granular product from the caustic fusion is first agitated with hot water in a steel tank and then fed directly to a horizontal solid-bowl continuous centrifuge, where an excellent and convenient separation of solids from liquids can be made. The water-insoluble zirconates are then dissolved in hot hydrochloric acid. Zirconyl chloride is crystallized from this solution at 250°C to remove iron, titanium, aluminum, some silica and other soluble impurities. The crystalline zirconyl chloride is separated from its mother liquor on a perforated basket centrifuge which gives a very dry crystal. These crystals are put into a water solution, which is clarified in order to remove most of the residual silica. The resulting pure zirconyl chloride solution may be processed further to give high-purity zirconium (or zirconyl) compounds, such as the oxide, fluoride, nitrate, sulfate and hydroxide." An alternate approach, known as carbon arc fusion process, is also shown in Figure 1. The zirconium carbonitride produced is chlorinated to produce zirconium tetra chloride which is then processed into ZrO₂. It has been stated⁽²⁾ that this process produces less pure material than the caustic fusion process. The physical characteristics of the ZrO₂ powders produced during the last portion of this contract were studied in more detail by comparing the surface area obtained versus the materials' agglomerated particle size. The surface area was measured with a Micromeritics Model 2200 Analyzer using nitrogen gas absorption. The agglomerated particle size was measured by the MSA centrifuge sedimentation approach⁽³⁾. A typical curve is shown in Figure 2. The dispersion approach used consisted of mixing 0.7 gm of ZrO₂ powder with one drop of Triton X-100, Dravan-C, and ethyl Figure 1. Flow diagram for ZrO₂ production. Figure 2. Typical particle size distribution curve for ZrO₂ obtained by MSA approach. hexanol and then blending this mixture in a 30 percent acetone-70 percent H₂O solution. This, in turn, was added to the sedimentation liquid (water) in the MSA equipment. It was assumed that the average particle size obtained was that of strong agglomerated particles of ZrO_2 , which probably approaches the particle diameter of the $ZrO_2 \cdot xH_2O$ particle from which the ZrO_2 was derived. This appears likely because basic zirconium sulfate particles are typically about 15 μ m and the first stage precipitate particles were measured at 8-10 μ m⁽¹⁾. It was also desirable to determine if further improvements in the ZrO₂ produced for PZ-PT could be obtained with additional manipulations of the precipitation process. #### A. REPRECIPITATION OF ZrO₂ · XH₂O Since $ZrO_2 \cdot x H_2O$ was available from the six lots of Harshaw material produced from three zircon sources⁽¹⁾ each of these was reprecipitated by the following process. Both of the first precipitate and second precipitate obtained as indicated in Equations 4 and 7 were dissolved in HCl according to Equation 5 to produce a solution of ZrOOHCl in water. This was accomplished by heating 2000 cc of 50 percent HCl/water solution and slowly adding 1000 gm of precipitate to the solution while mixing. The solution was boiled at 105°C for about 10 minutes to produce a straw-yellow clear solution. This solution was allowed to cool and stand several days during which time a slight amount of sediment settled to the bottom of the breaker. About 90 percent of the ZrOOHCl solution was carefully decantered from the beaker and the remaining 10 percent with sediment was discarded. It was assumed that most of the non-acid soluble impurities were removed by this process. Next, ammonium hydroxide was added in 10 percent excess of the amount required to satisfy the amount of ZrO_2 present in the solution (400 to 600 cc). Precipitation of ZrO_2 · xH_2O occurred rapidly. The precipitate was allowed to settle for a day; about 25 percent of the liquid remaining was decanted and then 2000 cc of water were added and decanted. This rinsing process was repeated seven times to produce a pH of about 7 in the solution. The precipitated material was dried at 150°C for 24 hours and then calcined at 900°C for 3 hours. The first set of three batches of ZrO₂ · xH₂O was prepared from the first stage precipitates of material derived from Florida, Georgia and Australia zircon sources, as described above. The second set of three was processed as above except that after the Zr00HCl solution was boiled, an additional 2000 ml of water was added to the solution and allowed to settle 2 days. The third set of three was produced from the Harshaw double precipitate. Since the double precipitates contained more ZrO_2 (less loss on ignition), 4500 grams of 60 percent HCl 40 percent water were mixed with 750 grams of precipitate. The remainder of the process was the same as the second set except 2000 to 2200 ml of NH₄ (OH) was required to bring the precipitate to a neutral state. In the fourth and fifth sets of single and double precipitates, respectively, the ratio of HCl to ZrO_2 in each batch of ZrO_2 was held constant. The weight of ZrO_2 present was based upon its 1200°C loss on ignition. The exact batch additions are given in Table 1. This table also shows the amount of NH₄ (OH) required to bring each batch to a neutral condition. An improvement was also found in the way the amonium hydroxide was added. The first 90 percent of the NH₄OH was added quickly but steadily to the solution during continuous mixing. After about 95 was added, the ZrO₂ became a coarse mud and more Table 1. Batch additions for reprecipitation of zirconium hydroxide. | Source of Zircon
Type ZrO ₂ -X H ₂ O
Precipitate | FS4
Florida
Single | GS4
Georgia
Single | AS4
Australia
Single | FD5
Florida
Double | GD5
Georgia
Double | AD5
Australia
Double | |--|--------------------------|--------------------------|----------------------------|--------------------------|--------------------------|----------------------------| | HCl in ml | 2480 | 1980 | 1980 | 3174 | 2768 | 3000 | | H ₂ O in ml | 3870 | 3168 |
3168 | 4974 | 4430 | 4800 | | Based on LOI of | 31.9 | 44.4 | 44.4 | 10.8 | 22.2 | 15.7 | | Gms ZrO ₂ in
750 gm Precip | 511 | 417 | 417 | 669 | 584 | 632 | | NH ₄ (OH) | 1650 | 1200 | 1300 | 1850 | 1650 | 1850 | NH₄OH did not mix into the solution evenly. When the mixture became a coarse mud, NH₄OH was slowly added and mixed thoroughly before addition of more NH₄OH. When this approach was used, the material went from a coarse to a creamy mixture and the PH was readily controlled. Each reprecipitated lot of zirconium hydroxide was calcined at 900°C for 3 hours. The 15 batches of ZrO₂ processed were physically and chemically evaluated and were wet blended into the standard PZ-PT batch formulation given below and described previously. (1) $Pb_{0.94} Sr_{0.06} (Zr_{0.53} Ti_{0.47}) O_3 + 0.05 Wt \% Fe_2 O_3$ #### B. COPRECIPITATION OF ZrO, INTO PX-PT In the first part of this program one batch of pure ZrO₂ and four batches with 0.02 to 0.36 percent of TiO₂ were prepared by coprecipitation from tetra N-butyl zirconate and titanate (TNBZ and TNBT).⁽¹⁾ However, the TNBZ used had an unusually high amount of silicon, iron and alumina. This work was repeated with a new lot of TNBZ. Three batches were made containing 0.00, 0.10 and 0.40 percent TiO₂ and two batches containing all of the Zr/Ti of the batch. In this process 800 gms of TNBZ/TNBT and 1400 gm of isopropyl alcohol were mixed together and then premixed water/acetic acid solution (5000 gm/300 cc) was slowly added to precipitate zirconium hydroxide. This mix was dried at 100°C and crushed and calcined at 500°C for 12 hours. These materials were physically and chemically characterized and then processed by the wet blending method into the standard PZ-PT batch as was done previously⁽¹⁾. A batching error was made in which the TiO₂ added through the TNBT was not compensated in the four batches with TNBT. Therefore, a second group of five batches of PZ-PT was produced and evaluated. Three other approaches were evaluated to determine if more uniform PZ-PT batches could be produced in a state where all the ingredients were insolution prior to precipitation of the ZrO₂. A stabilized ammonium zirconium carbonate (Bacote 20) and a zirconium acetate solution were obtained from Magnesium Elektron*. The loss on ignition (LOI) of these two solutions after heating to 1000°C for 1 hour was 79.93 and 77.92 percent, respectively. A second LOI indicated 79.95 and 77.76 percent, respectively. Based on these results, two standard PZ-PT batches, Table 2, were prepared in a high intensity Waring blender. Each ingredient was added in the order given and mixed about 2 minutes before adding the next ingredient. After addition of the PbO and 10 minutes of mixing, the solution was poured into trays, dried at 190°C for 3 days, and calcined at 860°C for 5 hours. The Bacote 20 based material contained a black core that indicated incomplete oxidization of the carbon from the decomposed acetate. Therefore, both batches were crushed and recalcined at 800°C for 5 hours. This second treatment appeared to completely oxidize all the carbon in both materials. In the next approach, material from either the Harshaw Florida first or second precipitate was dissolved in a boiling HCl/water solution as described earlier. A 250 gm batch of PZ-PT (standard composition) was prepared with 411 ml of ZrOOHCl solution (assayed previously to yield 50.84 gm of ZrO₂). An additional 100 cc of HCl and 200 cc of water were added to the ZrOOHCl solution and then 6.91 gm of strontium carbonate, 0.125 gm of Fe₂O₃ and 29.37 gm of TiO₂ were added and mixed thoroughly in the order given. All of these appeared to go into solution quite well. Before adding 163.32 gm of PbO, an additional 300 cc of HCl and 600 cc of water were added. Then the PbO was slowly added, and heated to 105°C to attempt to get all the lead oxide in solution. However, very little of the PbO appeared to be dissolved. Urea was dissolved in water and added in an at- * Magnesium Elektron Inc., Star Route A, Box 202-1, Flemington, N.J. 08822 Table 2. Batch formulations using chemical solutions of zirconium. | | Amount | Added | | |-------------------------------------|--------|--------|--------| | H ₂ O (cc) | 590 | 550 | 1250 | | Zirconium Acetate (cc) | 916.6 | | | | Bacote 20 (cc) | | 1012.6 | | | SrCO ₃ (gm) | 27.68 | 27.68 | 6.91 | | Fe ₂ O ₃ (gm) | 0.50 | 0.50 | 0.125 | | TiO ₂ (gm) | 117.50 | 117.50 | 29.37 | | PbO (gm) | 654.67 | 654.67 | 163.32 | | HCl (cc) | } | | 400 | | Zr OOHCl Solution (cc) | | | 411 | | Urea (gm) | | | 650 | | NH ₄ (OH) (gm) | | | 200 | tempt to coprecipitate all of the ingredients. A total of 650 gm of urea and 450 cc of water were added with no apparent precipitation. Then 200 gm of ammonium hydroxide were added to achieve complete precipitation. The resulting mixture was dried at 120°C and calcined at 700°C for 5 hours. While these three calcined batches appeared to be completely decomposed, they were extremely hard. No further work was done with this approach. #### C. CHEMICAL ANALYSIS OF LEAD ZIRCONATE TITANATE X-ray fluorescence was used to determine the amount of PbO, SrO, TiO₂ and ZrO₂ present in fired disc of lead zirconate-lead titanate. A Diano XRD 410 unit was used to establish the standards and perform all subsequent analysis. A mask with an opening of 0.68 inch in diameter was placed over all samples. Standard curves were established from 10 samples where Pb was varied from 53.38 to 63.39 percent, Sr from 0.27 to 5.80, Ti from 4.71 to 7.40 and Zr from 14.10 to 20.56. All samples tested were fired, ground flat and had a diameter and thickness of 0.85 and 0.10 inches, respectively. The sensitivity of this approach was evaluated by measuring six different samples prepared from the same batch of PZ-PT. The results obtained, after converting to an oxide basis, are shown in Table 3. A standard deviation of 0.4, 0.2, 0.3 and 0.02 was obtained for PbO, ZrO₂, TiO₂ and SrO, respectively. This table also indicates that the approach tends to give slightly high (1.0 percent) results for PbO, while the other data are slightly lower than the theoretical compounded batch. Table 3. Within batch chemical uniformity for six samples of wet blended PZ-PT using Florida precipitated ZrO₂. | S/N | % PbO | % ZrO2 | % TiO2 | % SrO | |-------------|-------|--------|--------|-------| | 2 | 66.30 | 19.90 | 11.95 | 1.85 | | 4 | 66.15 | 20.30 | 11.75 | 1.80 | | 8 | 66.95 | 19.86 | 11.41 | 1.78 | | 9 | 66.65 | 19.97 | 11.57 | 1.80 | | 10 | 66.87 | 19.99 | 11.34 | 1.80 | | 11 | 65.94 | 20.40 | 11.87 | 1.79 | | 莱 | 66.48 | 20.07 | 11.65 | 1.80 | | σ | 0.41 | 0.22 | 0.25 | 0.02 | | THEORETICAL | 65.46 | 20.38 | 11.72 | 1.94 | #### III. Results and Discussion In the first part of this study⁽¹⁾ it was shown that good high drive PZT could be fabricated from ZrO₂ whether produced from Florida, Georgia or Australia beneficiated zircon sand. These sands varied significantly in their physical particle size and chemical purity, but an alkali fusion, double precipitate process produced ZrO₂ with adequate chemical purity and essentially the same ultimate particle size. Such fully processed materials also produced PZ-PT with uniform piezoelectric properties at both low and high field driving conditions. ZrO₂ derived from only the first precipitate material proved to be very dependent upon the zircon source and calcination temperature. These ZrO₂ materials contained more silica, calcia and titania impurities which appeared to act as media for bonding small $(0.05~\mu m)$ crystallites into larger $(10.0~\mu m)$ agglomerates. When such ZrO₂ was used to produce PZ-PT, these large agglomerates apparently caused incomplete blending and densification of the PZ-PT and extensive variability in the piezoelectric behavior of the material produced. It was also shown that the dry blending approach for producing PZ-PT from fully processed ZrO₂ is more difficult to control than the wet blending mixing approach. It is incorrect to assume that poorly blended materials can be calcined and then wet ground to achieve satisfactory PZ-PT piezoelectric material. For instance, all nine of the dry blended compositions produced had fired densities of 6.96 to 7.47 gm/cc as opposed to 7.49 to 7.52 gm/cc for the same ZrO₂ wet blended PZ-PT compositions. Also, the piezoelectric coupling coefficient was 13 to 51 percent lower than similar wet blended material. While the differences between the single and double precipitated ZrO₂ was attributed to the higher silica content and higher average particle size of the single precipitate ZrO₂, information on the surface area of the ZrO₂ was not available at that time. Therefore, the second portion of this effort was concerned with (1) a further analysis of the differences in the various ZrO₂ produced and (2) improvements in the ZrO₂ and PZ-PT by additional chemical processing. #### A. SURFACE AREA OF ZrO, Figure 3 and Table 4 give the surface area of the ZrO₂ derived from various hydrates, sources of zircon sand and calcination temperatures. The TNBZ derived ZrO₂ produced at the Honeywell Ceramics Center and calcined at 500°C had surface areas of 47 to 56 square meters per gram, which was about the same as that produced by calcining Figure 3. ZrO₂ surface area as a function on calcination temperature. Table 4. Surface area of ZrO₂ in square meters per gram. | | Calcination
Temperature | Micro-
Pulverized | Florida
Zircon | Georgia
Zircon | Australia
Zircon | |---------------|----------------------------|----------------------|-------------------|-------------------|---------------------| | First | 600 | Yes | 50.7 | 48.9 | 63.4 | | Precipitate | 900 | No | 17.5 | | | | | 900 | Yes | 27.3 | 25.7 | 29.4 | | | 1200 | No | 1.66 | 1.19 | 0.57 | | | 1200 | Yes | 1.79 | 1.47 | 0.98 | | | 1320 | No | 0.74 | 0.79 | 0.86 | | | 1320 | Yes | 1.03 | 0.84 | 0.83 | | Second | 600 | Yes | 51.0 | 38.8 | 37.6 | | Precipitate | 900 | No | 11.3 |
 | | | | Yes | 15.7 | 16.1 | 15.7 | | | 1200 | No | 2.44 | 2.33 | 2.72 | | | | Yes | 4.62 | 2.59 | | | Harshaw Calci | ine | Yes | 23.0 | 25.0 | 21.5 | | Honeywell | | | | | | | 2168 | 500 | Yes | 47.2 | | | | 2169 | 500 | Yes | 54.0 | | | | 2170 | 500 | Yes | 56.2 | | | | 2171 | 500 | Yes | 45.7 | | | | 2172 | 500 | Yes | 53.2 | | | Harshaw's first stage zirconium hydrate at 600°C, but generally higher than the 600°C calcine second stage hydrate. It was shown previously⁽¹⁾ that the crystallites produced, after decomposition of the initial hydrate, are about 0.008 to 0.010 μ m in size. As the calcination temperature was increased, grain growth increased and surface area decreased, as shown in Figure 3. At the lower temperatures, ZrO₂ from the first stage precipitates generally had higher surface areas than the ZrO₂ from the second stage precipitates although crystalline sizes obtained were between 0.020 and 0.040 μ m. This suggests that the purer double precipitates have more interfacial contact areas that are physically stronger than the single precipitates. The assumption is partially verified by the fact that the surface area of unmicronized ZrO₂ derived from Florida zircon was 17.5 and 11.3 M²/gm for the single and double precipitates, respectively, as opposed to 27.3 and 15.7 M²/gm for the micronized ZrO₂. Less new surface area was generated for the double precipitated ZrO₂. At 1200°C, the surface area of the first stage ZrO₂ produced was slightly less than the second stage ZrO₂ (0.57-1.66 versus 2.33-2.72 M²/gm). The dry pressed density (after pressing at 2900 psi) of each type of ZrO₂ produced was also plotted in Figure 4 as a function of surface area of original ZrO₂ powder. The low surface area materials pressed to about 3.0-3.3 gm/cc, while the materials calcined below 1000°C produced pressed densities of 1.3-1.6 gm/cc. There appeared to be a slight dependency upon the purity difference between the first and second stage precipitates. A Figure 4. Influence of surface area on the dry pressed density of ZrO₂. more dramatic difference is noted for the very impure TNBZ derived ZrO₂ which pressed to 1.8-1.9 gm/cc. After the various ZrO₂ materials were batched and processed into the standard PZ-PT formulation, the dry pressed and fired density of each batch was determined and plotted as a function of the surface area of the ZrO₂ used. These data are presented in Figure 5. Both the dry pressed and fired density data show that the double precipitated ZrO₂ produce superior material than the more impure ZrO₂ obtained from the single, first stage precipitate ZrO₂ or impure lot of Tetra N-butyl zirconate. It was somewhat surprising to see that the surface area and crystalline size of the ZrO₂ produced from double precipitated materials had only a very minor influence on both fired and unfired density. The wet blend process may be capable of some grinding of the larger crystallites, but it is more probable that the cleaner grain boundaries promote grain growth and densification more readily than in the more impure materials. The trend of higher calcination temperatures to yield higher fired PZ-PT densities in the first stage, single precipitated ZrO₂ is also apparent. The fact that one 1200°C calcined ZrO₂ obtained from single precipitated Georgia zircon reached a fired density of 7.502 may relate to the fact that this zircon sand is finer and purer than the other two sources. The impact of ZrO₂ surface area used to produce PZ-PT by the dry blending method is much more striking. The fired density of PZ-PT produced from double precipitated ZrO₂ by this blending method is compared in Figure 6 to that produced by the wet blending method. When the finer, fluffy, high surface area ZrO₂ was dry blended into a batch, the PZ-PT produced had fired densities of only 6.95-7.15 gm/cc, whereas the coarse, 2-4 M²/gm surface area type of ZrO₂ produced PZ-PT with a 7.42-7.44 gm/cc density. #### **B. CHEMICAL UNIFORMITY OF FIRED PZ-PT** Use of the x-ray fluoresence technique described in Section II was a simple approach to obtain quantitative information on the chemical uniformity of the batches produced from various ZrO₂ powders and by the wet and dry blended processes. Table 5 gives the results obtained as a function of the ZrO₂ calcination temperature and zircon source. Theoretically, all compositions should have been 65.46 percent PbO, 20.38 percent ZrO₂, 11.72 percent TiO₂ and 1.94 percent SrO with the Zr/Ti ratio of 0.53/0.47. Figure 5. Influence of ZrO₂ surface area on the dry pressed and final PZ-PT densities. Figure 6. The impact of PZ-PT blending procedure on final density. Table 5. X-ray diffraction results on final PZ-PT compositions. | | | | Weight Percent PbO | t PbO | | Mols Zr/Ti | | Weig | Weight Percent SrO | t SrO | |--------------------|------------------|----------|--------------------|-----------|-------------|-------------------------|-------------|---------|--------------------|-----------| | | Type
Blending | <u> </u> | Florida Georgia | Australia | Florida | Georgia | Australia | Florida | Georgia | Australia | | First Precipitate | Wet | 67.51 | 67.26 | 67.05 | 0.542/0.458 | 0.562/0.438 0.551/0.449 | 0.551/0.449 | 1.83 | 1.83 | 1.85 | | 006 | Wet | 67.37 | 67.33 | 66.55 | 0.540/0.460 | 0.545/0.455 | 0.541/0.459 | 1.82 | 1.82 | 1.84 | | 1200 | Wet | 67.15 | 66.51 | 66.82 | 0.527/0.473 | 0.525/0.475 | 0.522/0.478 | 1.80 | 1.83 | 1.85 | | Second Precipitate | | | | | | | | | | | | 009 | Wet | 66.81 | 66.30 | 67.27 | 0.525/0.475 | 0.521/0.479 0.526/0.474 | 0.526/0.474 | 1.83 | 1.82 | 1.81 | | | Dry | 67.44 | 86.99 | 66.97 | 0.554/0.446 | 0.536/0.464 | 0.545/0.455 | 1.88 | 1.92 | 1.86 | | 006 | Wet | 92.99 | 65.91 | 67.02 | 0.525/0.475 | 0.524/0.476 | 0.525/0.475 | 1.86 | 1.87 | 1.83 | | | Dry | 67.37 | 66.82 | 66.73 | 0.542/0.458 | 0.527/0.473 | 0.530/0.470 | 1.75 | 1.78 | 1.87 | | 1200 | Wet | 66.18 | 67.23 | 66.97 | 0.520/0.480 | 0.534/0.466 0.542/0.458 | 0.542/0.458 | 1.83 | 1.82 | 1.82 | | | Dry | 67.06 | 66.54 | 67.03 | 0.522/0.478 | 0.525/0.475 | 0.526/0.474 | 1.90 | 1.96 | 1.83 | | Harshaw Calcine | Wet | 67.19 | 67.04 | 66.92 | 0.527/0.473 | 0.525/0.475 | 0.526/0.474 | 1.80 | 1.78 | 1.79 | | Honeywell | | | | | | | | | | | | 2168 | Wet | 66.43 | | | 0.535/0.465 | | | 1.83 | | | | 2169 | Wet | 66.42 | | | 0.530/0.470 | | | 1.89 | | | | 2170 | Wet | 66.91 | - | | 0.547/0.453 | | | 1.82 | | | | 2171 | Wet | 67.49 | | - | 0.539/0.461 | | | 1.78 | | | | 2172 | Wet | 66.05 | | | 0.530/0.470 | | | 1.85 | | | | | | | | | | 1 | | | | | These data show the presence of a consistently higher amount of PbO than the theoretical composition and the presence of lower SrO and Zr/Ti ratio. These results might indicate the need for a better set of standards; however, the variability of the SrO and Zr/Ti ratio suggests that real deviations in the chemical composition do exist in these batches. This was confirmed by analyzing the impact of Zr/Ti ratio on frequency constant. As the Zr/Ti ratio increased above 53/47, the frequency constant dropped significantly, whereas values less than 526/474 caused the frequency constant to drop. It was also interesting to note that at any given ZrO₂ calcination temperature wet blended compositions contained less variance in the SrO present than those of similar dry blended compositions. For instance, the wet blended single stage or double stage ZrO₂ materials produced 21 PZ-PT batches with 1.78 to 1.87 percent SrO, whereas the nine dry blended batches varied from 1.75 to 1.96 percent SrO. Such Zr/Ti ratio data as given in Table 5 will be used to help understand the piezo-electric properties obtained for the various PZ-PT batch produced in this study. #### C. REPRECIPITATED ZrO2 IN PZ-PT This portion of the program examined the impact of additional reprecipitation processes for ZrO₂ and their influence on the fired properties of PZ-PT. Five lots of ZrO₂ from either first or second stage precipitate from each source of zircon (Florida, Georgia and Australia) were prepared. The process of redissolving the first or second stage zirconium hydroxide precipitate pulp with hot HCl and then reprecipitating with ammonium hydroxide was discussed in Section II. It was assumed that the average particle size obtained was that of agglomerated particles of ZrO_2 or possibly the particle diameter of the zirconium hydroxide from which the ZrO_2 was derived. This appears likely because basic zirconium sulfate particles are typically about 15 μ m and the first stage precipitate particles were measured at 8-10 μ m⁽¹⁾. The advantage of the double precipitation process appears to be to break up these agglomerates to yield 1 to 3 μ m particles⁽¹⁾. It was therefore desirable to determine if further improvements in the ZrO₂ produced for PZ-PT could be obtained with additional replications of the precipitation process. Tables 6 and 7 give the chemical and physical property data obtained for each of the three reprocessed lots produced from the first stage precipitate calcined at 900°C, along with the data obtained previously⁽¹⁾ for the direct calcination of this material. Similarly, the two reprocessed lots of second stage precipitate are compared to the standard Harshaw calcine and the direct calcination of the double precipitate. Table 6 indicates that our reprocessing did not improve the chemical purity over that achieved by Harshaw in their process. In fact, the first two lots of reprocessed first precipitate appear to have been contaminated by silica. The silica may have come from the pyrex glass processing ware or chemicals used; however, if this was true, it should have also occurred in the reprocessed double precipitate. Since this did not occur, the high SiO₂ values reported are expected to be poor analytical data. Table 7 gives the data obtained on ZrO₂ particle size, surface area and bulk density. All of the reprocessed ZrO₂ generally had smaller agglomerates but lower
surface areas than those calcined materials from which they were derived. This was particularly true for the reprocessed Lot No. 4 and 5 materials believed to be our best approach. After each reprocessed ZrO₂ material was wet blended and processed into our standard PZ-PT formulation, data was obtained on the chemical, physical and electrical properties of each batch. These data are reported in Tables 8 through 14 and are compared to similar wet and dry blended ZrO₂ formulated PZ-PT batches. Table 8 gives the chemical composition of the fired PZ-PT obtained by the x-ray fluorescence approach. The results are similar to those discussed above—consistently high PbO and low SrO. The ratio of zirconium to titanium is again expected to be most useful in understanding the piezo-electric data; therefore, these results are repeated in Tables 9 through 14. Table 9 gives the dry pressed and fired density as well as the unpoled dielectric constant of each PZ-PT batch produced. The dry pressed density of each batch containing reprocessed ZrO₂ was consistently lower than its source ZrO₂ material. Similarly, the fired density was consistently higher. Densities of above 7.4 gm/cc and as high as 7.57 gm/cc were obtained from the first stage precipitated ZrO₂ as opposed to only 6.9 gm/cc for PZ-PT batches prepared from ZrO₂ from the original precipitate. Densities of 7.53-7.59 gm/cc were also obtained for PZ-PT produced from reprocessed double precipitated ZrO₂ as opposed to 7.5 gm/cc for the original ZrO₂. The unpoled dielectric constant was generally higher with the higher densities obtained, although the actual chemical Table 6. Chemical impurities in ZrO₂ powder. | | d | Percent Si | | ď | Percent Ti | | | Percent Fe | 0. | |--|--------|----------------------------------|---------------------|-------------------|-------------------|---------------------|-------------------|-------------------|---------------------| | | From | From | From | From | From | | From | l l | From | | | | Florida Georgia
Zircon Zircon | Australia
Zircon | Florida
Zircon | Georgia
Zircon | Australia
Zircon | Florida
Zircon | Georgia
Zircon | Australia
Zircon | | tate | | | | | | | | | | | 900°C Harshaw Precipitate/
Pulverized | 0.015 | 0.015 | 0.025 | 0.030 | 0.035 | 0.075 | 0.004 | 0.010 | 0.001 | | 900'C Reprocessed Lot 1 | 0.10 | 0.20 | 0.270 | 0.035 | 0.033 | 860.٢ | 0.037 | 0.005 | 0.003 | | 900°C Reprocessed Lot 2 | 0.20 | 0.17 | 0.180 | 090.0 | 0.035 | 0.094 | 0.042 | 0.003 | 0.003 | | 900°C Reprocessed Lot 4 | 0.031 | 0.012 | 0.066 | 0.037 | 0.011 | 0.036 | 0.020 | 0.003 | 0.003 | | | | | | | | | | | | | Second Precipitate | | | | | | | | | | | Harshaw Calcine | 0.002 | 0.001 | 0.010 | 900.0 | 0.004 | 0.020 | 0.004 | 0.004 | 0.010 | | 900 C Harshaw Precipitate/
Pulverized | <0.001 | 0.001 | 0.004 | 0.010 | 0.010 | 0.030 | 0.002 | <0.001 | <0.001 | | 900°C Reprocessed Lot 3 | 0.003 | 0.050 | 0.003 | 0.004 | 0.013 | 600.0 | 0.003 | 0.003 | 0.603 | | 900 C Reprocessed Lot 5 | 0.003 | 0.016 | 0.003 | 0.010 | 0.030 | 0.014 | 0.003 | 0.020 | 0.003 | | | | | | | | | | | | Table 7. Physical properties of ZrO₂ powders. | | | | | | | | | | - | | |------------------------------------|-----------------------------|--|-------------------------|-------------------------|-------------------------|--------------------|-----------------|--------------------------------------|-------------------------|-------------------------| | R | From
Australia
Zircon | 29.4 | 21.6 | 18.8 | 11.0 | | 21.5 | 15.7 | 10.8 | 9.1 | | Surface Area
M ² /Rm | From
Georgia
Zircon | 25.7 | 16.6 | 10.2 | 12.5 | | 25.0 | 16.1 | 12.5 | 9.6 | | •• | From
Florida
Zircon | 27.3 | 15.6 | 17.5 | 10.1 | | 23.0 | 15.7 | 11.3 | 9.5 | | Λ | From
Australia
Zircon | 1.10 | 0.820 | 0.674 | 0.776 | | 0.67 | 0.53 | 0.755 | 0.658 | | Bulk Density
gm/cc | From
Georgía
Zircon | 1.08 | 0.879 | 1.027 | 0.819 | | 0.66 | 0.51 | 0.741 | 0.539 | | E | From
Florida
Zircon | 1.15 | 0.850 | 0.559 | 0.749 | | 99.0 | 0.65 | 0.813 | 0.518 | | Percent
Less than 0.5 um | From
Australia
Zircon | 0/6.7 | 10.0/5 | 5.9/15 | 6.7/10 | | 1.4/15 | 2.2/18 | 5.6/16 | 6.0/12 | | Ē | From
Georgia
Zircon | 9.7/0 | 10.1/5 | 8.9/9 | 5.8/11 | | 1.4/16 | 1.3/18 | 1.3/25 | 2.4/17 | | Average
Particle
Diameter | From
Florida
Zircon | 10.1/0 | 7.4/8 | 2.0/23 | 3.0/16 | | 1.3/16 | 1.4/15 | 1.1/23 | 2.8/17 | | | | First Precipitate
900°C Harshaw Precipitate/Pulverized 10.1/0 | 900°C Reprocessed Lot 1 | 900°C Reprocessed Lot 2 | 900°C Reprocessed Lot 4 | Second Precipitate | Harshaw Calcine | 900'C Harshaw Precipitate/Pulverized | 900°C Reprocessed Lot 3 | 9007C Reprocessed Lot 5 | Table 8. Chemical composition of fired PZ-PT. | | | | | • | | | | | | | |--|---------------------|---------------------------|---------------------------|-----------------------------|---------------------------|---------------------------|-----------------------------|---------------------------|---------------------------|-----------------------------| | | | Percent PbO | | Theorical (65.46 Percent) | | Mols Zr/Ti | | Percent S | Percent SrO (1.94 Percent | orical
Percent | | | Blending
Process | From
Florida
Zircon | From
Georgia
Zircon | From
Australia
Zircon | From
Florida
Zircon | From
Georgia
Zircon | From
Australia
Zircon | From
Florida
Zircon | From
Georgia
Zircon | From
Australia
Zircon | | First Precipitate | | | | | | | | | | | | 900°C Harshaw Precipitate/
Pulverized | Wet | 67.37 | 67.33 | 66.55 | 0.538/0.462 | 0.543/0 457 | 0.539/0.461 | 1.82 | 1.82 | 1.84 | | 900°C Reprocessed Lot 1 | Wet | 67.33 | 61.19 | 67.11 | 0.522/0.478 | 0.524/0.476 | 0.513/0.487 | 1.88 | 1.87 | 1.78 | | 900°C Reprocessed Lot 2 | Wet | 08.99 | 66.77 | 61,19 | 0.520/0.480 | 0.528/0.472 | 0.522/0.478 | 1.55 | 1.88 | 1.85 | | 900° C Reprocessed Lot 4 | Wet | 66.30 | 67.47 | 67.36 | 0.520/0.480 | 0.525/0.487 | 0.525/0.487 | 1.85 | 1.77 | 1.82 | | Second Precipitate | | | | | | | | | | | | Harshaw Calcine | Wet | 61.19 | 67.04 | 66.92 | 0.527/0.473 | 0.525/0.475 | 0.526/0.474 | 1.80 | 1.78 | 1.79 | | 900°C Harshaw Precipitate/
Pulverized | Wet | 92.99 | 65.91 | 67.02 | 0.525/0.475 | 0.524/0.476 | 0.525/0.475 | 1.86 | 1.87 | 1.83 | | 900°C Harshaw Precipitate/
Pulverized | Dry | 67.37 | 66.82 | 66.74 | 0.542/0.458 | 0.528/0.472 | 0.530/0.470 | 1.75 | 1.78 | 1.87 | | 900°C Reprocessed Lot 3 | Wet | 67.11 | 66.41 | 60.79 | 0.526/0.474 | 0.524/0.476 | 0.518/0.482 | 1.85 | 1.86 | 1.88 | | 900°C Reprocessed Lot 5 | Wet | 67.10 | 67.52 | 67.30 | 0.522/0.478 | 0.527/0.473 | 0.522/0.478 | 1.76 | 1.77 | 1.83 | | | | | | | | | | | | | Table 9. Density and unpoled dielectric constant of PZ-PT. | | | | Green Density
in gm/cc | .ts | | Fired Density
in gm/cc | £ % | Die | Dielectric Constant
Unpoled | nstant | |--|---------------------|---------------------------|---------------------------|-----------------------------|---------------------------|---------------------------|-----------------------------|---------------------------|--------------------------------|-----------------------------| | | Blending
Process | From
Florida
Zircon | From
Georgia
Zirzon | From
Australia
Zircon | From
Florida
Zircon | From
Georgia
Zircon | From
Australia
Zircon | From
Florida
Zircon | From
Georgia
Zircon | From
Australia
Zircon | | First Precipitate | | | | | | | | | | | | 900 C Harshaw Precipitate/
Palverized | ¥. | 4.426 | 4.454 | 4.354 | 5.662 | 6.860 | 6.881 | 860 | 827 | 813 | | son C Reprocessed Lot 1 | We-1 | 4.210 | 4.170 | 4.211 | 7.487 | 7.450 | 7.416 | 861 | 880 | 876 | | 900 C Reprocessed Lot 2 | ¥e·t | 4.204 | 4.194 | 4.113 | 7.554 | 7.478 | 7.501 | 922 | 862 | 876 | | gen i Reprocessed Lot 4 | West | 3.927 | 4.034 | 4.041 | 7.50 | 7.57 | 7.53 | 226 | 066 | 964 | | Second Precipitate | | | | | | | | | | | | Harshaw Calcine | West | 4.081 | 4.061 | 3.986 | 7.502 | 7.485 | 7.514 | 066 | 1005 | 895 | | Soo C Harshaw Precipitate/
Pulverized | Wet | 4.105 | 4.036 | 3.972 | 7.514 | 7.514 | 7.499 | 1006 | 1010 | 991 | | 900 T Harshaw Precipitate/
Pulverized | Dry | 4.238 | 4.077 | 4.151 | 7.420 | 7.474 | 7.377 | 948 | 886 | 931 | | 900 C Reprocessed Lot 3 | Wet | 3.938 | 3.908 | 4.105 | 7.528 | 7.555 | 7.551 | 973 | 947 | 688 | | 900 C Reprocessed Lot 5 | Wet | 3.861 | 3.839 | 3.900 | 7.59 | 7.590 | 7.56 | 266 | 1033 | 366 | Table 10. Poled dielectric constant of PZ-PT. | | | | Mols Zr/Ti | | Die] | Dielectric Constant
Poled | nstant | P
Diel | Percent Aging
Dielectric Constant | ing
nstant | |--|---------------------|---------------------------|---|-----------------------------|---------------------------|------------------------------|-----------------------------|---------------------------|--------------------------------------|-----------------------------| | | Blending
Process | From
Florida
Zircon | From
Georgia
Zircon | From
Australia
Zircon | From
Florida
Zircon | From
Georgia
Zircon | From
Australia
Zircon | From
Florida
Zircon | From
Georgia
Zircon | From
Australia
Zircon | | First Precipitate | • | | | | | | | | | | | 900°C Harshaw Precipitate/
Pulverized | Wet | 0.538/0.462 | 0.538/0.462 0.543/0.457 0.539/0.461 | 0.539/0.461 | 904 | 785 | 901 | -3.71 | -4.33 | -5.89 | | 900°C Reprocessed Lot 1 | Wet | 0.522/0.478 | 0.522/0.478 0.524/0.476 0.513/0.487 | 0.513/0.487 | 910 | 936 | 862 | -4.78 | -5.00 | -4.55 | | 900°C Reprocessed Lot 2 | Wet | 0.520/0.480 | 0.520/0.480 0.528/0.472 | 0.522/0.478 |
975 | 916 | 925 | -4.89 | -4.66 | -5.03 | | 900°C Reprocessed Lot 4 | Wet | 0.520/0.480 | 0.525/0.487 0.525/0.487 | 0.525/0.487 | 1028 | 1006 | 296 | -5.45 | -5.05 | -5.03 | | Second Precipitate | | | | _ | | | | | | | | Harshaw Calcine | Wet | 0.527/0.473 | 0.527/0.473 0.525/0.475 0.526/0.474 | 0.526/0.474 | 1003 | 1090 | 1044 | -4.44 | -4.66 | -3.98 | | 900'C Harshaw Precipitate/
Pulverized | ₩et | 0.527/0.475 | 0.527/0.475 0.524/0.476 0.525/0.475 | 0.525/0.475 | 1047 | 1045 | 1050 | -4.56 | -5.14 | -5.13 | | 900°C Harshaw Precipitate/
Pulverized | Dry | 0.542/0.458 | 0.542/0.458 0.528/0.472 0.530/0.470 | 0.530/0.470 | 932 | 978 | 936 | -5.34 | -5.19 | -4.55 | | 900 C Reprocessed Lot 3 | Wet | 0.526/0.474 | 0.524/0.476 | 0.518/0.482 | 991 | 911 | 922 | -5.89 | -4.17 | -4.15 | | 900'C Reprocessed Lot 5 | #e1 | 0.522/0.478 | 0.527/0.473 | 0.522/0.478 | 984 | 1062 | 972 | -4.33 | -5.34 | 04.26 | | _ | | | | | | | | | | | Table 11. Piezoelectric radial coupling coefficient of PZ-PT. | | | | Mols Zr/Ti | | Rad | Radial Coupling
Factor | ing | P.
Radial | Percent Aging
Radial Coupling Factor | ing
Factor | |---|----------|----------------------------|-------------------------------------|-----------------------------|---------------------------|---------------------------|-----------------------------|---------------------------|---|-----------------------------| | | Blending | From
Florida
Zircon | From
Georgia
Zircon | From
Australia
Zircon | From
Florida
Zircon | From
Georgia
Zircon | From
Australia
Zircon | From
Florida
Zircon | From
Georgia
Zircon | From
Australia
Zircon | | First Precipitate
900°C Harshaw Precipitate/ | Wet | 0.538/0.462 | 0.538/0.462 0.543/0.457 0.539/0.461 | 0.539/0.461 | 0.450 | 0.448 | 0.401 | -201 | -1.58 | -2.01 | | 900°C Reprocessed Lot 1 | Wet | 0.522/0.478 | 0.524/0.476 | 0.513/0.487 | 0.318 | 0.371 | 0.316 | -3.31 | -2.86 | -2.92 | | 900°C Reprocessed Lot 4 | Wet | 0.520/0.480 | 0.525/0.487 | 0.525/0.487 | 0.426 | 0.433 | 0.396 | -2.80 | -2.80 | -3.05 | | Second Precipitate
Harshaw Calcine
900°C Harshaw Precipitate/ | Wet | 0.527/0.473 | 0.525/0.475 | 0.526/0.474 | 0.484 | 0.508 | 0.483 | -2.08 | -2.48 | -2.46 | | Pulverized
900°C Harshaw Precipitate/ | Dry | 0.542/0.458 | 0.528/0.472 | 0.530/0.470 | 0.328 | 0.365 | 0.285 | -3.09 | -3.04 | -4.55 | | Pulverized
900°C Reprocessed Lot 3
900°C Reprocessed Lot 5 | Wet | 0.526/0.474
0.522/0.478 | 0.524/0.476
0.527/0.473 | 0.518/0.482 | 0.322 | 0.407 | 0.346 | -3.10 | -2.44 | -3.01 | Table 12. Piezoelectric frequency constant of PZ-PT. | | | | Mols Zr/Ti | r/Ti | Frec | Frequency Constant
Hertz-Meters | nstant
ers | Pre Fre | Percent Aging
Frequency Constant | ing | |----------------------------|----------|---------------------------|--|-----------------------------|---------------------------|------------------------------------|-----------------------------|---------------------------|-------------------------------------|-----------------------------| | | Blending | From
Florida
Zircon | From
Georgia
Zircon | From
Australia
Zircon | From
Florida
Zircon | From
Georgia
Zircon | From
Australia
Zircon | From
Florida
Zircon | From
Georgia
Zircon | From
Australia
Zircon | | Discripitate | | | | | | | | - | | | | 900°C Harshaw Precipitate/ | Wet | 0.538/0.462 | 0.543/0.457 0.539/0.461 | 0.539/0.461 | 2133 | 2083 | 2141 | +0.81 | +0.73 | +0.61 | | 900°C Reprocessed Lot 1 | Wet | 0.522/0.478 | 0.524/0.476 0.513/0.487 | 0.513/0.487 | 2381 | 2353 | 2389 | 49.92 | 66.0+ | +0.84 | | 900°C Reprocessed Lot 2 | Wet | 0.520/0.480 | 0.528/0.472 | 0.522/0.478 | 2349 | 2385 | 2347 | 66.0+ | 06.0+ | +1.00 | | 900°C Reprocessed Lot 4 | Wet | 0.520/0.480 | 0.525/0.487 | 0.525/0.487 | 2305 | 2323 | 2325 | +1.16 | +1.06 | +1.07 | | Second Precipitate | | | | | | | | | | , | | Harshaw Calcine | Wet | 0.527/0.473 | 0.525/0.475 0.525/0.474 | 0.525/0.474 | 2252 | 2231 | 2253 | 96.0+ | +0.70 | +1.14 | | 900°C Harshaw Precipitate/ | Wet | 0.525/0.475 | 0.524/0.476 0.525/0.475 | 0.525/0.475 | 2253 | 2249 | 2250 | +1.20 | +1.26 | +1.24 | | 900°C Harshaw Precipitate/ | Dry | 0.542/0.458 | 0.528/0.472 | 0.530/0.470 | 2268 | 2277 | 2285 | +1.23 | +1.22 | +1.13 | | 900°C Reprocessed Lot 3 | Wet | 0.526/0.474 | 0.524/0.476 0.518/0.482
0.527/0.473 0.522/0.478 | 0.518/0.482 | 2363 | 2379 | 2421
2340 | +1.11 | +0.82 | +0.75 | | | | | | | | | | 1 | 1 | | Table 13. Mechanical quality factor of PZ-PT. | | | | Mols 2r/T | r/T: | Мес | Mechanical Quality
Factor (Q _m) | uality
n) | | Percent Aging
Qm | ging | |---|---------------------|---------------------------|-------------------------------------|-----------------------------|---------------------------|--|-----------------------------|---------------------------|---------------------------|-----------------------------| | | Blending
Process | From
Florida
Zircon | From
Georgia
Zircon | From
Australia
Zircon | From
Florida
Zircon | From
Georgia
Zircon | From
Australia
Zircon | From
Florida
Zircon | From
Georgia
Zircon | From
Australia
Zircon | | First Precipitate
900°C Harshaw Precipitate/
Pulverized | Wet | 0.538/0.462 | 0.538/0.462 0.543/0.457 0.539/0.461 | 0.539/0.461 | 099 | 659 | 662 | +23.6 | 8.6+ | +9.1 | | 900°C Reprocessed Lot 1 | Wet | 0.522/0.478 | 0.524/0.476 | 0.524/0.476 0.513/0.480 | 1014 | 066 | 1034 | +31.1 | +29.2 | +31.9 | | 900°C Reprocessed Lot 2 | Wet | 0.520/0.480 | 0.528/0.472 | 0.522/0.478 | 1081 | 1008 | 930 | +29.3 | +28.7 | +31.2 | | 900°C Reprocessed Lot 4 | Wet | 0.520/0.480 | 0.525/0.487 | 0.525/0.487 | 722 | 875 | 910 | +32.5 | +29 6 | +29.7 | | Second Precipitate | | | | | | | | | | | | Harshaw Calcine | Wet | 0.527/0.473 | 0.527/0.473 0.525/0.475 0.526/0.474 | 0.526/0.474 | 878 | 668 | 826 | +20.3 | +17.7 | +23.5 | | 900°C Harshaw Precipitate/
Pulverized | Wet | 0.525/0.475 | 0.525/0.475 0.524/0.476 0.525/0.475 | 0.525/0.475 | 872 | 883 | 858 | +24.7 | +25.7 | +30.2 | | 900°C Harshaw Precipitate/
Pulverized | Dry | 0.542/0.458 | 0.528/0.472 0.530/0.470 | 0.530/0.470 | 738 | 863 | 883 | +40.0 | +37.8 | +35.9 | | 900°C Reprocessed Lot 3 | Wet | 0.526/0.474 | 0.524/0.476 | 0.524/0.476 0.518/0.482 | 968 | 1512 | 1395 | +32.3 | +23.3 | +27.6 | | 900°C Reprocessed Lot 5 | ₩et | 0.522/0.478 | 0.527/0.473 | 0.527/0.473 0.522/0.478 | 1005 | 270 | 1095 | +27.5 | +32.1 | +21.9 | Table 14. High drive properties of PZ-PT. | Blending Process | | | Mols 7r/T: | | Percent
Percent
10 | Percent Increase in Cap./
Percent Dissipation at
10V/mil | in Cap./
on at | Percent Increase in Cap.
Percent Dissipation at
15V/mil | ercent increase in ta
Percent Dissipation a
15V/mil | n Cap./
on at | |---|-----|---------------------------|-------------------------------------|---|---------------------------|--|-----------------------------|---|---|-----------------------------| | | Nr. | From
Florida
Zircon | From
Georgia
Zircon | From
Australia
Zircon | From
Florida
Zircon | From
Georgia
Zircon | From
Australia
Zircon | From
Florida
Zircon | From
Georgia
Zircon | From
Australia
Zircon | | <u> </u> | | | | | | | | | | ı | | 900°C Harshaw Precipitate/ Wet
900°C Reprocessed Lot 1 Wet | | /0.462 . | 0.543/0.457 | 0.538/0.462 0.543/0.457 0.539/0.461 6.1/1.9 6.1/1.9 0.522/0.478 0.522/0.478 0.513/0.487 2.7/1.0 3.2/1.2 | 2.7/1.0 | 6.1/1.9 | 6.5/1.9 | 6.5/1.9 12.9/3.5 14.3/3.5
2.4/1.0 5.4/2.0 6.3/2.2 | 5.4/2.0 6.3/2.2 | 13.3/3.6 | | | | /0.480 | 0.520/0.480 0.528/0.472 0.522/0.478 | 0.522/0.478 | 3.0/1.0 3.0/1.2 | 3.0/1.2 | 2.6/1.0 | 5.7/2.0 | 6.0/2.1 | 5.5/1.9 | | 900°C Reprocessed Lot 4 Wet | | /0.480 | 0.525/0.487 | 0.520/0.480 0.525/0.487 0.525/0.487 5.2/1.9 4.0/1.4 | 5.2/1.9 | 4.0/1.4 | 4.6/1.4 | 4.6/1.4 10.4/3.7 | 8.1/2.8 | 7.6/2.5 | | | | - | | | | | | | | | | Second Precipitate | | | | | | | | | | | | Harshaw Calcine Wet | _ | /0.473 | 0.525/0.475 | 0.527/0.473 0.525/0.475 0.526/0.474 4.0/1.3 4.3/1.4 | 4.0/1.3 | 4.3/1.4 | 2.7/1.4 | | 9.8/2.9 11.8/3.3 | 10.7/3.2 | | 900°C Harshaw Precipitate/ Wet
Pulverized | | /0.475 | 0.524/0.476 | 0.525/0.475 0.524/0.476 0.525/0.475 3.7/1.3 4.7/1.6 | 3.7/1.3 | 4.7/1.6 | 4.3/1.5 | 4.3/1.5 10.5/3.0 11.9/3.4 | 11.9/3.4 | 10.6/3.2 | | 900°C Harshaw Precipitate/ Dry
Pulverized | | /0.458 | 0.528/0.472 | 0.542/0.458 0.528/0.472 0.530/0.470 4.4/1.5 4.4/1.5 | 4.4/1.5 | 4.4/1.5 | 4.0/1.3 | 4.0/1.3 10.3/3.1 9.0/2.9 | 9.0/5.9 | 7.7/2.5 | | 900'C Reprocessed Lot 3 Wet | | /0.474 (| 0.524/0.476 | 0.526/0.474 0.524/0.476 0.518/0.482 4.1/1.6 1.9/0.5 | 4.1/1.6 | 1.9/0.5 | 2.1/0.7 | 8.5/3.0 | 8.5/3.0 3.6/1.0 | 4.2/1.4 | | 900 C Reprocessed Lot 5 Wet | _ | /0.478 | 0.527/0.473 | 0.522/0.478 0.527/0.473 0.522/0.478 3.4/1.1 5.0/1.9 | 3.4/1.1 | 5.0/1.9 | 3.3/1.0 | | 7.0/2.4 10.6/3.2 | 5.9/2.0 | composition may have had some impact on some of the PZ-PT compositions obtained from ZrO₂ generated from reprocessed double precipitate. The poled dielectric constant and aging rate of each PZ-PT batch compounded from the various types of ZrO_2 are given in Table 10. The increase in dielectric constant was more dramatic in those batches of PZ-PT compounded from reprecipitated ZrO_2 which
originated from the first stage zirconium hydroxide. This was caused by the significant improvement in density with these materials. The aging rate was also significantly higher because these materials were more thoroughly polarized. Improvements obtained in PZ-PT from reprocessed ZrO_2 derived from double precipitated zirconium hydroxide were more variable and dependent upon not only the fired density obtained but the specific Zr/Ti ratio and composition obtained. Data on the piezoelectric radial coupling coefficient is given in Table 11. In general, the coupling coefficient was lower than that obtained in the PZ-PT produced from the reprecipitated ZrO_2 materials. It is not clear why this occurred. Possibly, the more effective blending obtained with the reprocessed materials and higher densities shifts the point at which the Zr/Ti ratio must be optimized for maximum coupling coefficient. Aging rate again was highest for compositions with higher amounts of rhombohedral phase (higher Zr/Ti ratio) PZ-PT. Similar conclusions can also be drawn from the data shown in Tables 12 through 14 for frequency constant, mechanical quality factor and the percent increase in capacitance and dissipation factor at high driving fields. For instance, Figure 7 shows the frequency constant as a function of Zr/Ti ratio. PZ-PT produced from ZrO₂, which gave fired densities of 7.45 to 7.59 gm/cc and a Zr/Ti ratio of 0.52/0.48 to 0.53/0.47, had a frequency constant of 2220 to 2380 hertz-meters. Lower amounts of ZrO₂ produced slightly higher frequency constants, while higher amounts of ZrO₂ produced significantly lower frequency constants. Lower densities also tended to yield PZ-PT with lower frequency constants. These results are consistent with those normally associated with PZ-PT compositions. The aging rate for each property was also consistent with the composition and extent of polarization obtained. #### D. COPRECIPITATION OF PZ-PT It was shown above that the ZrO₂ particle and agglomerate size and the uniform distribution of ZrO₂ in the PZ-PT are important factors in controlling the properties of PZ-PT Figure 7. Zr/Ti ratio versus frequency constant for PZ-PT produced from various ZrO₂. piezoelectric ceramic. The generation of PZ-PT from chemical solutions should avoid both of these problems by simultaneous precipitation of ZrO_2 , TiO_2 , SrO and iron oxide. Such an approach would provide mixing on a molecular scale, and the particle size of the solid solution compounds of these materials would probably not be important in the early stages of processing. It should also produce more uniform fired behavior in the PZ-PT produced. Since PbO has a high mobility during the calcination process, coprecipitation of PbO in the batch may not be necessary. Morgan⁽⁴⁾ recently gave an excellent review of the basic approach of chemical processing of ceramics and points out, "It is often easier to change the starting powder than embark upon prolonged studies of why a particular source material behaves as it does." He also points to a common ceramicist's myth that liquid chemical techniques for powders are expensive and not easily adaptable to the large scale ceramic processes. The irony of this situation is that the TiO₂ used in PZ-PT has been prepared by liquid chemical techniques in combination with barium and other pigments for years in the paint industry. Also, Zr is in chemical solution very early in the process for producing pure ZrO₂. Several groups have studied the use of chemical solution processes in order to obtain more commercially acceptable or a superior optical quality PZ-PT material. Wright coordinated an extensive effort at the Canadian Department of Mines in the early 1960's⁽⁵⁾ to produce PZ-PT via the process of mixing solutions of Pb(NO₃)₂, Zr(NO₃)₄ and Ti(NO₃)₄ and then precipitation with (NH₄)₂CO₃ and NH₄OH, ammonium gas or H₂C₂O₄ (oxcilic acid). However, they experienced difficulties in producing fine, friable calcined material suitable for further ceramic processing and were concerned over the acidic nature of the nitrates evolved during calcining. Mulder⁽⁶⁾ has shown that Ti, Zr, Pb, and other compounds can be dissolved with citric acid and then processed into PZ-PT. This was accomplished by dissolving purified hydroxide with ammonia and citric acid. Unfortunately, Ba and Sr form insoluble citrates and precipitate too rapidly to use in this process. However, he noted that barium formate and ammonium titanyl citrate remain in solution many hours. The aqueous solutions were spray dried into alcohol. In this process it was necessary to control (1) the acidity of initial aqueous citrate solution, (2) the final water content of alcohol after precipitation, (3) the type of alcohol used, and (4) the drying technique of powder. Mazdiyasni⁽⁷⁾ demonstrated a process for producing ZrO₂ and BaTiO₃ by the simultaneous hydrolytic decomposition of metal organic alkoxide compounds of Zr(OC₅H₁₁)₄, Ba(OC₃H₇)₂ and Ti(OC₅H₁₁)₄ in water. This general approach was then studied in more detail at Sandia⁽⁸⁾ to produce PZ-PT from lead oxide, tetra N-butyl zirconate and tetra N-butyl titanate. By further doping with lanthanum acetate, a lanthanum doped PLZT was obtained which could be calcined and hot pressed into an optically transparent ferroelectric material. This process was first used on a production basis at Honeywell. Although the materials required are very expensive, it has been demonstrated that coprecipitation of PZ-PT can be used in production. The three approaches of trying to make complete PZ-PT batches by chemical solution methods appeared to show promise; however, incomplete decomposition took place at lower temperature. At normal temperatures the calcined material reacted together so thoroughly that grinding of this material was not considered practical. While these techniques were not successful, the progress made appears to warrant consideration for a larger more concentrated program on the chemical solution preparation of PZ-PT. The effort on chemical solution approaches was limited to those where ZrO₂ and TiO₂ were mixed as tetra N-butyl zirconate (TNBZ) or titanate (TNBT), calcined at 500°C and then wet blended into the PZ-PT composition and processed by conventional approaches. Table 15 compares the second and third groups of ZrO₂ materials prepared for this portion of the program. The purity of the TNBZ was typical of that used in production of PLZT ceramics as opposed to the impure TNBZ used previously. (1) Table 16 gives the chemical uniformity of the PZ-PT produced from the coprecipitated ZrO₂/TiO₂ produced. Batch Nos. 6643 and 6644 were formulated within the 53/47 ZrO₂/TiO₂ material produced where the TiO₂ was not compensated for in the batch. This was also true in Batches 6641 and 6642. Batch Nos. 6646-6649 were properly made. Therefore, the ZrO₂ · TiO₂ in Nos. 6648 and 6649 were correctly formulated. X-ray fluorescence data for each of these is given in Table 16. Note that the standard deviations obtained for each major oxide examined in these batches using TNBZ derived ZrO_2 and TiO_2 was significantly lower than those samples from a single batch of parts produced from ZrO_2 as in Table 3. The Zr/Ti ratio obtained was consistently lower (51/49 versus 53/47) than desired. Apparently, this was caused by improper compensation for impurities in the ZrO_2 . Table 15 gives the percent loss on ignition, bulk density, particle size and surface area of each ZrO₂/TiO₂ combination prepared. These are also compared to the previously⁽¹⁾ prepared TNBZ ZrO₂. The average agglomerate size was about three microns, whereas the surface varied between 26 to 56 M²/gm. Bulk densities were about 1.0 gm/cc except 0.7 gm/cc for the 53/47 ZrO₂/TiO₂ material. Table 17 gives the properties of the PZ-PT batches processed from all of the various chemically prepared ZrO₂/TiO₂ materials in this program. The high purity materials produced PZ-PT with a fired density consistently above 7.54 gm/cc compared to 7.41 to 7.44 gm/cc for PZ-PT with the impure TNBZ ZrO₂ materials. Where 53/47 co-precipitated ZrO₂/TiO₂ was used, densities of 7.60 gm/cc were achieved—the highest obtained in this program at the 1280°C firing temperatures. While the low Zr/Ti Table 15. Properties of TNBZ/TNBT derived ZrO₂/TiO₂ powders. | ZrO ₂ /TiO ₂
Cal. No. | Wt Percent TiO ₂ Added to ZrO ₂ | Percent
Loss on
Ignition | Bulk
Density
gm/ee | Average
Particle
Diameter
µm | Percent
Particles
Less than
0.5 µm | Surface
Area
M ² /gm | |--|---|--------------------------------|--------------------------|---------------------------------------|---|---------------------------------------| | 2168 | 0 | 0.86 | 0,98 | 2.1 | 11 | 47.2 | | 3177 | О | 1.00 | 1.10 | 3.8 | 4 | 26.7 | | 2169 | 0.02 | 0.99 | 0.94 | 2.0 | 9 | 54.0 | | 2170 | 0.08 | 0.89 | 1,00 | 2.8 | 8 | 56,2 | | 3178 | 0.10 | 1.06 | 1.04 | 4.8 | 3 | 31.0 | | 2171 | 0.18 | 0.95 | 1.11 | 2.2 | 10 | 45.7 | | 2172 | 0.36 | 1.00 | 1.03 | 2.6 | 6 | 53.2 | | 3179 | 0.40 | 0.96 | 1.05 | 4.3 | 4 | 41.9 | | 3180 | 36.50 | 9.92 | 0.76 | 3.0 | 1 | 40.0 | | 3181 | 36.50 | 1.07 | 0.69 | 2.8 | 0 | 33.2 | | FH* | o | 0.55 | 0.66 | 1.3 | 16 | 23.0 | ^{*} Harshaw Calcinc Produced From Florida Zircon by Standard Process. Table 16. Chemical uniformity of TNBZ/TNBT coprecipitated PZ-PT batches. | Batch
No. | $ rac{Amt}{TiO}_2$ | Percent
PbO | Percent
ZrO ₂ | Percent
TiO ₂ | Percent
Sr0 | Zr/Ti
Ratio | |--------------|--------------------|----------------|-----------------------------|-----------------------------|----------------|----------------| | 6625 | | 66.38 | 19.57 | 12.17 | 1.88 | 0.527/0.473 | | 6640 | | 66.21 | 19.69 | 12.23 | 1.87 | 0.510/0.490 | | 6650 | | 66.58 | 19.38 | 12.16 | 1.87 | 0.507/0.493 | | 6641 | 0.1 | 66.24 |
19.64 | 12.24 | 1.88 | 0.510/0.490 | | 6646 | 0.1 | 66.55 | 19.34 | 12.28 | 1.83 | 0.506/0.494 | | 6642 | 0.4 | 66.43 | 19.51 | 12.22 | 1.84 | 0.507/0.493 | | 6647 | 0.4 | 66.84 | 19.29 | 12.16 | 1.81 | 0.507/0.493 | | 6648 | 53/47 | 66.70 | 19.38 | 12.12 | 1.80 | 0.508/0.492 | | 6649 | 53/47 | 66.56 | 19.42 | 12.15 | 1.87 | 0.510/0.490 | | X | | 66.48 | 19.48 | 12.19 | 1.85 | 0.510/0.490 | | 73 | | 0.17 | 0.13 | 0.05 | 0.03 | | | 6643 | 53/47 | 63.19 | 16.85 | 18.15 | 1.81 | 0.375/0.625 | | 6644 | 53/47 | 62,49 | 15.40 | 20.32 | 1.79 | 0.325/0.675 | Table 17. Fired piezoelectric properties of PZ-PT prepared | | | | - | | | Unpoled D | Unpuled Dielectric Poled Dielectric Radial Piezo Frequency Constant | Poled Die | Sectric | Radial | Piezo F | requency | | Mechanical | ical | |---------------|-----------------|---------------------------------|--------------------|---------------------|-----------|-----------|---|---------------|---------|----------------|-----------------|---------------|--------|--------------------|--------| | | 10.7 | Me 1gth! | Pressed | Fired Density gm/cc | ity gm/cc | Constant | tant | Constant | tant | Coupling Coeff | Coeff | Cycle-Meters | | Quality | Factor | | Katin b | Katio Batch No. | Added Density Added Trop Rem/cc | Density
1 km/cc | 12805C | 1320 ຕ | 1280 C | 1280 C 1320 C | 1280 C 1320 C | 1320 (| 1280 C | 1280 C 1320 C | 1280 C 1320 C | 1320 C | 1280 ^{ور} | 1320 C | | 0.535 | 6600 | 0 | 4.26 | 7.409 | | 932 | | 1038 | | 0,455 | | 2228 | | 915 | | | 0.510 | 9940 | С | 4.07 | 7.538 | | 941 | | 866 | | 0.236 | | 2344 | | 712 | | | 0.507 | 6650 | С | 4.06 | 7.595 | 7.552 | 226 | 914 | 1039 | 1012 | 0.205 | 0.286 | 2353 | 2317 | 622 | 651 | | 0.530 | 6601 | 0.02 | 4.26 | 7,414 | | 920 | | 994 | | 0.440 | - | 2253 | | 817 | | | 0.547 | 6602 | 80.0 | 4.23 | 7.415 | | 925 | • | 1031 | _ | 0.451 | - | 2237 | _ | 098 | | | 0.510 | *6641 | 0.10 | 4.07 | 7.537 | | 266 | | 1060 | | 0.269 | | 2303 | | 962 | | | 0.506 | 6616 | 0.10 | 4.18 | 7.595 | 7,556 | 958 | 924 | 1036 | 1034 | 0.258 | 0.298 | 2348 | • | 735 | 689 | | 0.539 | 6603 | 0.18 | 4.25 | 7.406 | | 932 | | 955 | | 0.464 | | 2212 | • | 795 | | | 0.530 | 6604 | 0.36 | 4.22 | 7.434 | | 923 | | 1001 | | 0.437 | | 2252 | | 930 | | | 0.507 | * 6642 | 0.40 | 4.09 | 7.563 | | 957 | | 1019 | | 0.230 | | 2346 | | 707 | | | 0.507 | 6647 | 0.40 | 4.14 | 7.593 | 7.545 | 944 | 925 | 1048 | 1051 | 0.266 | 0.330 | 2336 | 2303 | 714 | 929 | | 0.375 +6643 | *6643 | 36.5 | 4.15 | 7.535 | | 202 | | 207 | | 0.0 | | 1 | | 1 | | | 0.508 | 6648 | 36.5 | 4.13 | 7.607 | 7.550 | 1018 | 926 | 1093 | 1083 | 0.248 | 0.355 | 2321 | 2276 | 658 | 650 | | 0.325 - *6644 | +6644 | 36.5 | 4.19 | 7.535 | | 260 | - | 266 | | 0.0 | | 1 | | 1 | | | 0.510 | 6649 | 36.5 | 4.11 | 7.611 | 7.558 | 1023 | 961 | 1101 | 1579 | 0.244 | 0.338 | 2326 | 2276 | 671 | 614 | | 0.527 | 6625 | : | 4 06 | 7.519 | 7 490 | - 898 | 435 | 1082 | 1106 | 0.430 | 0 513 | 9979 | 1999 | 733 | 707 | • Excessive ${ m TiO}_2$ added to batch (amount added via ZrO $_2$ not compensated) •• Harshaw Calcined ZrO $_2$ produced by Standard Process from Florida Zircon compositions produced inferior PZ-PT, the properties obtained are typical for the Zr/Ti ratios in these compositions. The impact of a higher firing temperature, 1320°C, is also shown to improve the piezoelectric behavior. Very excellent reproducibility was obtained in Batch Nos. 6648 and 6649, which used the coprecipitated 53/47 Zr/Ti ratio. Therefore, it can be concluded that chemical solution mixing approaches of the Zr and Ti will in themselves lead to a greatly improved PZ-PT. #### IV. Summary and Conclusions The chemical and physical properties of zirconium oxide have been shown to have a pronounced influence on the piezoelectric properties obtained in lead zirconate-lead titanate ceramics. Strongly bound agglomerated particles formed were about 10 to 15 μ m in diameter and composed of 0.02 μ m ZrO₂ crystallites. The standard alkali fusion process produced such material after the first stage precipitate of the zirconium hydroxide was calcined at about 900°C. The ZrO₂ produced at this stage also contained substantial amounts of silica and calcia impurities. Normal micropulverization techniques of the calcined ZrO₂ material and wet ball milling mixing procedures used with the PZ-PT batch did not disintegrate the ZrO₂ agglomerates sufficiently to produce a well distributed dispersion of ZrO₂ in the TiO₂, SrO and PbO. Thus, an effective method was not obtained for producing PZ-PT from this partially processed ZrO₂. When the first stage zirconia hydroxide was redissolved in hot hydrochloric acid and reprecipitated with ammonium hydroxide, a second stage zirconium hydroxide material was obtained; this was much lower in silica and calcia and could be calcined and micronized to produce agglomerated particles 1 to 2 μ m in diameter. This second stage material could be wet blended into a PZ-PT batch that produced good high drive piezoelectric material. A procedure was established to perform the second stage precipitation process, which produced ZrO₂ essentially comparable to that produced by Harshaw's standard process. The second stage zirconium hydroxide, produced by Harshaw, was also reprocessed with HCl/NH₄OH reprecipitation process, but when the triple precipitated zirconium hydroxide was calcined and micronized, no further improvement in the ZrO₂ or PZ-PT was apparent. The above results were essentially the same for ZrO₂ produced from three different sources of zircon. However, the fineness of the zircon sand appeared to have some impact on the ZrO₂ produced from the first stage zirconium hydroxide precipitate. The finer, purer Georgia zircon produced the best ZrO₂ and PZ-PT ceramics. More complete solution ceramic mixing and coprecipitation were initially investigated. While these approaches appeared attractive, they were not developed to the stage where good PZ-PT compositions were produced. Coprecipitation of zirconium and titanium from their tetra N-butyl solutions was used to produce a ZrO₂/TiO₂ mixture and PZ-PT with superior densities at low temperatures. The purity of the ZrO₂ and the exact Zr/Ti ratio of the PZ-PT materials produced had a pronounced influence on the piezoelectric behavior of the ceramic obtained. 47602 ### V. Acknowledgements The authors gratefully acknowledge the encouragement and guidance provided by Dr. Bob Pohanka of the Office of Naval Research and the technical monitor for this program. The authors are very appreciative of the splendid cooperation of the Harshaw Chemical Company and Dr. C.A. Seabright, et al, whose subcontracted effort on this program provided many of the ZrO₂ process variations. #### References - 1. W.B. Harrison, "Effect of ZrO₂ Source Variations on PbZrO₃-PbTiO₂ Piezoelectric Properties," Technical Report No. 1, ONR N00014-76-C-0623, Honeywell Inc., December 1977. - 2. Benjamin Lustman and Frank Kerze, Jr., "The Metallurgy of Zirconium," First Edition, McGraw-Hill, p. 68-75, New York 1955. - 3. K.T. Whitby, "A Rapid General Purpose Centrifuge Sedimentation Method for Measurement of Size Distribution of Small Particles," Trans, Am. Soc. of Heating and Air-Conditioning Engineers, Vol. 61, p. 33, 1955. - 4. P.E.D. Morgan, "Chemical Processing for Ceramics (and Polymers)," Proc. 14th Univ. Conf. On Cer. Sci-Processing of Crystalling Ceramics, Plenum Press, New York, p. 67-77, 1977. - 5. V.M. McNamara and W.A. Gow, "A Chemical Precipitation Method for the Production of a Homogeneous, High Purity Powder Applicable to the Lead Zirconate Titanate Solid Solution Series," Canada Dept. of Mines and Tech. Surveys, Ottawa Report IR63-39, April 1963. - 6. B.J. Mulder, "Preparation of BaTiO₃ and Other Ceramic Powders by Coprecipitation of Citrates in an Alcohol," Bull. Am. Cer. Soc. 49(11) 990-993, 1970. - 7. K.S. Mazdiyasni, C.T. Lynch and J.S. Smith, "Preparation of Ultra-High-Purity Submicron Refractory Oxides," J. Am. Cer. Soc., 48(7) 372-375, 1965. - 8. G.H. Haertling and C.E. Land, "Recent Improvements in the Optical and Electro-optic Properties of PLZT Ceramics," Ferroelectics 3(2,3,4) p. 269-280, 1972. and the complete of the second second by the second ### BASIC DISTRIBUTION LIST Technical and Summary Reports | Organization | No. of Copies | Organization | No. of Copies | |---|---------------|---|---------------| | Defense Documentation | | Naval Air Development Center | | | Center | | Code 302 | | | Cameron Station
Alexandria, Virginia 22314 | (12) | Warminster, Pennsylvania 18974
Attn: Mr. F.S. Williams | (1) | | Office of Naval Research | | Naval Air Propulsion Test Cente | er | | Department of the Navy | | Trenton, New Jersey 08628 Attn: Library | (1) | | Attn: Code 471 | (1) | num, Biolaly | (1) | | Code 102 | (1) | Naval Construction Batallion | | | Code 470 | (1) | Civil Engineering Laboratory | | | | | Port Hueneme, California 93043 | (1) | | Commanding Officer | | | | | Office of Naval Research | | Naval Electronics Laboratory | | | Branch Office
495 Summer Street | | Center
San Diego, California 92152 | | | Boston, Massachusetts 0221 | l0 (1) | Attn: Electron Materials | | | 20000, | , | Sciences Division | (1) | | Commanding Officer | | | | | Office of Naval Research | | Naval Missile Center | | | Branch Office | | Materials Consultant | | | 536 South Clark Street | /1\ | Code 3312-1 | /1\ | | Chicago, Illinois 60605 | (1) | Point Mugu, California 93041 | (1) | | Office of Naval Research | | Commanding Officer | | | San Francisco Area Office | | Naval Surface Weapons Center | | | 760 Market Street, Room 44 | 7 | White Oak Laboratory | | | San Francisco, California 94 | 1102 | Silver Spring, Maryland 20910 | | | Attn: Dr. P.A. Miller | (1) | Attn: Library | (1) | | Naval Research Laboratory
| | David W. Taylor Naval Ship | | | Washington, D.C. 20390 | | R&D Center | | | 0 , | | Materials Department | | | Attn: Code 6000 | (1) | Annapolis, Maryland 21402 | (1) | | Code 6100 | (1) | March March Co. 1 | | | Code 6300 | (1) | Naval Undersea Center | | | Code 6400
Code 2627 | (1)
(1) | San Diego, California 92132
Attn: Library | (1) | | COUC HOW! | (4/ | navers was | \~/ | ### BASIC DISTRIBUTION LIST (Continued) ### Technical and Summary Reports | | No. of
Copies | | No. of
Copies | |--|-------------------|--|------------------| | Naval Underwater System
Center
Newport, Rhode Island 02840
Attn: Library | (1) | Army Research Office
Box CM, Duke Station
Durham, North Carolina 27706
Attn: Metallurgy & Ceramics Div | ·. (1) | | Naval Weapons Center
China Lake, California 93555
Attn: Library
Naval Postgraduate School | (1) | Army Materials and Mechanics
Research Center
Watertown, Massachusetts 02172
Attn: Res. Programs Office
(AMXMR-P) | (1) | | Monterey, California 93940 Attn: Mechanical Engineering Dept. Naval Air Systems Command | (1) | Air Force
Office of Scientific Research
Bldg. 410
Bolling Air Force Base | (-/ | | Washington, D.C. 20360 Attn: Code 52031 Code 52032 Code 320 | (1)
(1)
(1) | Washington, D.C. 20332 Attn: Chemical Science Directorate Electronics and Solid State Sciences | (1) | | Naval Sea System Command
Washington, D.C. 20362
Attn: Code 035 | (1) | Directorate Air Force Materials Lab (LA) Wright-Patterson AFB Dayton, Ohio 45433 | (1) | | Naval Facilities
Engineering Command
Alexandria, Virginia 22331
Attn: Code 03 | (1) | NASA Headquarters Washington, D.C. 20546 Attn: Code RRM | (1) | | Scientific Advisor Commandant of the Marine Corps Washington, D.C. 20380 Attn: Code AX | (1) | NASA
Lewis Research Center
21000 Brookpark Road
Cleveland, Ohio 44135
Attn: Library | (1) | | Naval Ship Engineering Cente
Department of the Navy
CTR BG # 2 | | National Bureau of Standards
Washington, D.C. 20234 | (2) | | 3700 East-West Highway
Prince Georges Plaza
Hyattsville, Maryland 20782
Attn: Engineering Materials | | Attn: Metallurgy Division
Inorganic Materials
Division | (1)
(1) | | and Services Office,
Code 6101
47602 | (1) | 38 | | # BASIC DISTRIBUTION LIST (Concluded) Technical and Summary Reports | | o. of
opies | Organization | No. of Copies | |---|----------------|--|---------------| | Defense Metals and
Ceramics
Information Center
Battelle Memorial Institute
505 King Avenue
Columbus, Ohio 43201 | (1) | Brookhaven National Laboratory
Technical Information Division
Upton, Long Island
New York 11973
Attn: Research Library | (1) | | Director Ordnance Research Laboratory P.O. Box 30 State College, Pennsylvania 16801 | (1) | Building 50 Room 134 Lawrence Radiation Laboratory Berkeley, California | (1) | | Director Applied Physics
Laboratory
University of Washington
1013 Northeast Fortieth Street
Seattle, Washington 98105 | (1) | | | | Metals and Ceramics Division Oak Ridge National Laboratory P.O. Box X Oak Ridge, Tennessee 37380 | (1) | | | | Los Alamos Scientific Laboratory P.O. Box 1663 Los Alamos, New Mexico 8754 Attn: Report Librarian | 44
(1) | | | | Argonne National Laboratory
Metallurgy Division
P.O. Box 229
Lemont, Illinois 60439 | (1) | | | | | No. of | | No. of | |---------------------------|--------|--------------------------------|--------| | Organization | Copies | Organization | Copies | | | | | | | Dr. W.F. Adler | | Dr. Dean Buckner | | | Effects Technology Inc. | | Piezo Products Division | | | 5383 Hollister Avenue | | Gulton Industries | | | P.O. Box 30400 | | P.O. Box 4300 | | | Santa Barbara, CA 92105 | (1) | Fullerton, CA 92634 | (1) | | Dr. G. Bansal | | Dr. Robert Callahan | | | Battelle | | Channel Industries | | | 505 King Avenue | | 839 Ward Drive | | | Columbus, OH 43201 | (1) | Box 3680 | | | Columbus, Oli 10201 | (1) | Santa Barbara, CA 93105 | (1) | | Professor Michael Bell | | banta Barbara, Cir boro | (*/ | | Yeshiva University | | Professor L. E. Cross | | | Belfer Graduate School | | The Pennsylvania State | | | of Science | | University | | | New York, NY 10033 | (1) | Materials Research Lab. | | | New Fork, NT 10033 | (1) | University Park, PA 16802 | (1) | | Dr. Don Berlincourt | | University ratk, 122 10002 | (1) | | | | Mr. N. Codo | | | Channel Products | | Mr. N. Coda | | | 16722 Park Circle Dr. W. | (1) | Vice President for Engineering | 3 | | Chagrin Falls, OH 44022 | (1) | Erie Technological Products | | | Do III Diana | | West College Avenue | /11 | | Dr. J.V. Biggers | | State College, PA 16801 | (1) | | Pennsylvania State Univ. | | n. A 0 P | | | Materials Research Lab. | 443 | Dr. A.G. Evans | | | University Park, PA 16802 | (1) | Rockwell International | | | | | P.O. Box 1085 | | | Mr. George Boyer | | 1049 Camino Dos Rios | 445 | | Sensor Systems Program | | Thousand Oaks, CA 91360 | (1) | | Office of Naval Research | | | | | Code 222 | | Mr. E. Fisher | | | Arlington, VA 22217 | (1) | Ford Motor Company | | | | | Dearborn, MI | (1) | | Professor R. Bradt | | | | | Ceramics Section | | Dr. P. Gielisse | | | Materials Sciences Dept. | | University of Rhode Island | | | The Pennsylvania State | | Kingston, RI 02881 | (1) | | University | | | | | University Park, PA 16802 | (1) | Dr. M. E. Gulden | | | - | | International Harvester Co. | | | Dr. R. Bratton | | Solar Division | | | Westinghouse Research Lab | | 2200 Pacific Highway | | | Pittsburgh, PA 15235 | (1) | San Diego, CA 92138 | (1) | | 48400 | | - | | | 4777313 | | | | | Organization | No. of
Copies | Organization | No. of Copies | |---|------------------|---|---------------| | Dr. Gene Haertling
Motorola Corporation
3434 Vassar N. E.
Albuquerque, NM 87107 | (1) | Dr. P. Jorgensen
Stanford Research Institute
Poulter Laboratory
Menlo Park, CA 94025 | (1) | | Dr. W.B. Harrison
Honeywell Ceramics Center
1885 Douglas Drive
Golden Valley, MN 55422 | (1) | Dr. R. N. Katz
Army Materials and
Mechanics Research Center
Watertown, MA 02171 | (1) | | Dr. D. P. H. Hasselman
Virginia Polytechnic Inst.
Dept. of Materials Sciences
Blacksburg, VA | (1) | Dr. H. Kirchner
Ceramic Finishing Company
P.O. Box 498
State College, PA 16801 | (1) | | Mr. G. Hayes Naval Weapons Center China Lake, CA 93555 Professor A. H. Heuer | (1) | Dr. B. Koepke
Honeywell, Inc.
Corporate Research Center
500 Washington Avenue South
Hopkins, MN 55343 | (1) | | Case Western Reserve University University Circle Cleveland, OH 44106 | (1) | Mr. Frank Koubek
Naval Surface Weapons Center
White Oak Laboratory
Silver Spring, MD 20910 | (1) | | Dr. F. Robert Hill
Marine Resources
755 Highway 17 & 92
Fern Park, FL 32730 | (1) | E. Krafft
Carborundum Company
Niagara Falls, NY | (1) | | Dr. R. Hoagland
Battelle
505 King Avenue
Columbus, OH 43201 | (1) | Dr. F.F. Lange
Rockwell International
P.O. Box 1085
1049 Camino Dos Rios
Thousand Oaks, CA 91360 | (1) | | Dr. Bernard Jaffe
232 Forbes Road
Bedford, OH 44146
Dr. R. Jaffee | (1) | Dr. J. Lankford
Southwest Research Institute
8500 Culebra Road
San Antonio, TX 78284 | (1) | | Electric Power Research
Institute
Palo Alto, CA | (1) | | (*/ | | 47602 | 41 | | | | Organization | No. of
Copies | Organization | No. of Copies | |--|------------------|--|---------------| | Dr. R. Lapetina
Edo Western Corporation
2645 South 300 West
Salt Lake City, UT 84115 | (1) | Dr. F. Markarian
Naval Weapons Center
China Lake, CA 93555
Dr. Perry A. Miles | (1) | | Mr. C. LeBlanc
Naval Underwater Systems
Center
TD 121
Newport, RI 02840 | (1) | Raytheon Company Research Division 28 Seyon Street Waltham, MA 02154 Dr. N. Perrone | (1) | | Library
Norton Company
Industrial Ceramics Division
Worcester, MA 01606 | on
(1) | Code 474 Office of Naval Research 800 N. Quincy Street Arlington, VA 22217 | (1) | | Dr. R.E. Loehman
University of Florida
Ceramics Division
Gainesville, FL 32601 | (1) | Dr. R. Pohanka
Naval Research Laboratory
Code 6361
Washington, DC 20375 | (1) | | State University of New Yo
College of Ceramics at
Alfred University
Attn: Library
Alfred, NY 14802 | rk
(1) | Dr. Frank Recny
General Electric Company
Court Street
Plant Building C
Box 1122
Syracuse, NY 13201 | (1) | | Dr. L. Hench Department of Metallurgy University of Florida Ceramics Division Gainesville, FL 32603 | (1) | Mr. R. Rice Naval Research Laboratory Code 6360 Washington, D. C. 20375 | (1) | | Professor P.B. Macedo
The Catholic University
of America
Washington, DC 20017 | (1) | Dr. J. Ritter University of Massachusetts Dept. of Mechanical Engineering Amherst, MA 01002 | (1) | | Dr. N. MacMillan
Materials Research Lab.
Pennsylvania State Univ.
College Park, PA 16802 | (1) | Dr. J.H. Rosolowski
General Electric
Company
Research and Development C
P.O. Box 8
Schenectady, NY 02301 | tr
(1) | | 47602 | | 49 | | | Organization | No. of
Copies | Organization | No. of Copies | |--|------------------|---|---------------| | Professor R. Roy
Pennsylvania State Univ.
Materials Research Lab.
University Park, PA 16802
Dr. R. Ruh | (1) | Dr. T. Vasilos AVCO Corporation Research and Advanced Development Division 201 Lowell Street Wilmington, MA 01887 | (1) | | AFML
Wright-Patterson AFB
Dayton, OH 45433 | (1) | Dr. Charles C. Walker
Naval Sea Systems Command
National Center No. 3 | | | Mr. J. Schuldies
AiResearch
Phoenix, AZ | (1) | 2531 Jefferson Davis Highway
Arlington, VA 20390 | (1) | | Dr. J. H. Simmons
Catholic University of
America
Washington, DC 20064 | (1) | Mr. J. D. Walton Engineering Experiment Station Georgia Institute of Technology | (1) | | Dr. P. L. Smith Naval Research Laboratory Code 6361 Washington, DC 20375 | (1) | Atlanta, GA 30332 Dr. Paul D. Wilcox Sandia Laboratories Division 2521 | (1) | | Professor G. Sines
University of California,
Los Angeles
Los Angeles, CA 90024 | (1) | Albuquerque, NM 87115 Dr. S. M. Widerhorn Inorganic Materials Division National Bureau of Standards | (1) | | Dr. N. Tallan
AFML | (=/ | Washington, DC 20234 The State University of New York at Alfred | (1) | | Wright-Patterson AFB Dayton, OH 45433 Dr. R.W. Timme | (1) | Material Sciences Division
Alfred, NY | (1) | | Naval Research Laboratory Code 8275 Underwater Sound Reference Division | e | Dr. S.A. Bortz
IITRI
10 W. 35th Street
Chicago, IL 60616 | (1) | | P.O. Box 8337
Orlando, FL 32806 | (1) | - · | | | Organization | No. of
Copies | Organization | No. of
Copies | |---|------------------|--|------------------| | Mr. G. Schmitt
Air Force Materials Lab.
Wright-Patterson AFB
Dayton, OH 45433 | (1) | Major W. Simmons Air Force Office of Scientific Research Building 410 Bolling Air Force Base | | | Dr. D.A. Shockey
Stanford Research Institute
Poulter Laboratory
Menlo Park, CA 94025 | (1) | Washington, DC 20332 Dr. P. Becher Naval Research Laboratory | (1) | | Dr. W. G. D. Frederick
Air Force Materials Lab. | (*) | Code 6362
Washington, DC 20375 | (1) | | Wright-Patterson AFB Dayton, OH 45433 | (1) | Mr. L.B. Weckesser Applied Physics Laboratory Johns Hopkins Road | 44 | | Dr. P. Land Air Force Materials Lab. Wright-Patterson AFB Dayton, OH 45433 | (1) | Mr. D. Richarson AiResearch Manufacturing Co. | (1) | | Mr. K. Letson
Redstone Arsenal | (1) | 4023 36th Street
P.O. Box 5217
Phoenix, AZ 85010 | (1) | | Huntsville, AL 35809 Dr. S. Freiman Naval Research Laboratory | | Dr. H. E. Bennett
Naval Weapons Center
Code 3818 | | | Code 6363
Washington, DC 20375 | (1) | China Lake, CA 93555 Mr. G. Denman | (1) | | Director Materials Sciences Defense Advanced Research Projects Agency | ı | Air Force Materials Laborator
Code LPJ
Wright-Patterson AFB
Dayton, OH 45433 | (1) | | 1400 Wilson Boulevard
Arlington, VA 22209 | (1) | Dr. D. Godfrey
Admiralty Materials Laborator | | | Dr. James Pappis Raytheon Company Research Division | | Polle, Dorset BH16 6JU
United Kingdom | (1) | | 28 Seyon Street
Waltham, MA 02154 | (1) | | | | Organization | No. of Copies | |---|---------------| | Dr. N. Corney
Ministry of Defense
The Adelphi
John Adam Street
London WC2N 6BB
United Kingdom | (1) | | Dr. L. M. Gillin Aeronautical Research Laboratory P. O. Box 4331 Fisherman's Bend Melbourne, VIC 3001 Australia | (1) |